On the basis of scanning thermal microscopy (SThM) measurements in contact and lift modes, the low-frequency acoustic phonon temperature in electrically biased, 6.7-9.7 μm long graphene channels is found to be in equilibrium with the anharmonic scattering temperature determined from the Raman 2D peak position. With ∼100 nm scale spatial resolution, the SThM reveals the shifting of local hot spots corresponding to low-carrier concentration regions with the bias and gate voltages in these much shorter samples than those exhibiting similar behaviors in the infrared emission maps.