The role of particle morphology in interfacial energy transfer in CdSe/CdS heterostructure nanocrystals

Science. 2010 Dec 3;330(6009):1371-4. doi: 10.1126/science.1198070.

Abstract

Nanoscale semiconductor heterostructures such as tetrapods can be used to mimic light-harvesting processes. We used single-particle light-harvesting action spectroscopy to probe the impact of particle morphology on energy transfer and carrier relaxation across a heterojunction. The generic form of an action spectrum [in our experiments, photoluminescence excitation (PLE) under absorption in CdS and emission from CdSe in nanocrystal tetrapods, rods, and spheres] was controlled by the physical shape and resulting morphological variation in the quantum confinement parameters of the nanoparticle. A correlation between single-particle PLE and physical shape as determined by scanning electron microscopy was demonstrated. Such an analysis links local structural non-uniformities such as CdS bulbs forming around the CdSe core in CdSe/CdS nanorods to a lower probability of manifesting excitation energy-dependent emission spectra, which in turn is probably related to band alignment and electron delocalization at the heterojunction interface.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.