Polyphenol identification based on systematic and robust high-resolution accurate mass spectrometry fragmentation

Anal Chem. 2011 Jan 1;83(1):409-16. doi: 10.1021/ac102546x. Epub 2010 Dec 9.

Abstract

High-mass resolution multi-stage mass spectrometry (MS(n)) fragmentation was tested for differentiation and identification of metabolites, using a series of 121 polyphenolic molecules. The MS(n) fragmentation approach is based on the systematic breakdown of compounds, forming a so-called spectral tree. A chip-based nanoelectrospray ionization source was used combined with an ion-trap, providing reproducible fragmentation, and accurate mass read-out in an Orbitrap Fourier transform (FT) MS enabling rapid assignment of elemental formulas to the molecular ions and all fragment ions derived thereof. The used protocol resulted in reproducible MS(n) fragmentation trees up to MS(5). Obtained results were stable over a 5 month time period, a concentration change of 100-fold, and small changes in normalized collision energy, which is key to metabolite annotation and helpful in structure and substructure elucidation. Differences in the hydroxylation and methoxylation patterns of polyphenolic core structures were found to be reflected by the differential fragmentation of the entire molecule, while variation in a glycosylation site displayed reproducible differences in the relative intensities of fragments originating from the same aglycone fragment ion. Accurate MS(n)-based spectral tree data are therefore a powerful tool to distinguish metabolites with similar elemental formula, thereby assisting compound identification in complex biological samples such as crude plant extracts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Flavonoids / analysis*
  • Flavonoids / chemistry*
  • Flavonoids / metabolism
  • Glycosylation
  • Hydroxylation
  • Injections
  • Mass Spectrometry / methods*
  • Metabolomics / methods*
  • Nanotechnology
  • Phenols / analysis*
  • Phenols / chemistry*
  • Phenols / metabolism
  • Polyphenols
  • Reproducibility of Results
  • Stereoisomerism
  • Time Factors

Substances

  • Flavonoids
  • Phenols
  • Polyphenols