Degradation mechanisms of phoxim in river water

J Agric Food Chem. 2011 Jan 12;59(1):312-21. doi: 10.1021/jf1029459. Epub 2010 Dec 8.

Abstract

Degradation of phoxim in river water was fully explored in this paper. Effects of pH, temperature, and photoirradiation on the degradation were investigated in detail. The results indicated that the degradation was characterized by a first-order process; UV irradiation and the increase of pH and temperature substantially accelerated the degradation. To fully characterize the degradation mechanism, HPLC-MS/MS was utilized to identify the degradation intermediates. Five intermediates were identified as phoxom, phoxom dimer, O,O,O',O'-tetraethyldithiopyrophosphate, O,O,O'-triethyl-O'-2-hydroxyethyldisulfinylpyrophosphate, and O,O,O'-triethyl-O'-2-hydroxyethyldithiopyrophosphate. On the basis of the results of the intermediate analysis, the degradation pathways of phoxim under the present experimental conditions were proposed. Through conversion of a thiophosphoryl into a phosphoryl group, some phoxim was converted to phoxom, most of which further formed dimer. Another portion of phoxim transformed to O,O,O',O'-tetraethyldithiopyrophosphate via nucleophilic substitution and photolysis. Thereafter, O,O,O',O'-tetraethyldithiopyrophosphate underwent hydroxylation to form O,O,O'-triethyl-O'-2-hydroxyethyldithiopyrophosphate or sulfur oxidation first and then hydroxylation to produce O,O,O'-triethyl-O'-2-hydroxyethyldisulfinylpyrophosphate. The understanding of phoxim's degradation mechanism in this study will be critical to its safety assessment and increase the understanding of the fate of phoxim in environment water.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hot Temperature
  • Hydrogen-Ion Concentration
  • Organothiophosphorus Compounds / chemistry*
  • Rivers / chemistry*
  • Water Pollutants, Chemical / chemistry*

Substances

  • Organothiophosphorus Compounds
  • Water Pollutants, Chemical
  • phoxim