Early detection of indoor wood-decay fungi is crucial to prevent building deterioration and thereby avoid considerable economic loss. Due to their increased sensitivity, two reliable DNA-based fingerprinting techniques, capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) and denaturing high-performance liquid chromatography (DHPLC), were used to identify Serpula lacrymans and to profile wood-rot Basidiomycetes in the built environment. Molecular fungal diversity was assessed on 74 environmental samples, collected from 2003 to 2009 from infected buildings in France. S. lacrymans, the most widespread, indoor wood-decay fungus accounted for 64% of total wood-rot Basidiomycetes. A number of other common wood-rot fungi such as Coniophora puteana, Trametes versicolor and Donkioporia expansa were identified. Other Basidiomycetes such as Phlebiopsis gigantea and Scleroderma verrucosum were detected for the first time in the built environment. Reliable diagnostic tools were developed using two PCR-based molecular typing techniques, one for routine diagnosis and another one for community inventories. Together they provided useful data for characterising the complexity of wood-decay ecosystems and helped reveal the coexistence of different wood-decay fungi within the same microbiotope.
Copyright © 2010 Elsevier B.V. All rights reserved.