The high incidence of mammary tumor disease reported in certain canine breeds suggests a significant genetic component, as has already been described in human familial breast cancer-in BRCA1- and BRCA2-associated breast cancer in particular. The identification of genetic risk factors is critical to improvements in the prevention, diagnosis, and treatment of these tumors. In recent years, there has been significant progress in developing the tools and reagents necessary to analyze the canine genome. This work has culminated in a high-quality draft genome sequence, as well as a single-nucleotide polymorphism map and single-nucleotide polymorphism arrays for genomewide association analysis. These tools provide an unprecedented opportunity to characterize the genetic influences in canine diseases such as cancer, eventually allowing for exploration of more effective therapies. Given the high homology between the canine genome sequence and its human counterpart--as well as the many similarities regarding the morphology, biological behavior, and clinical course of mammary tumors in both species--the dog has proven to be an excellent comparative model. This review highlights the comparative aspects regarding certain areas within molecular biology, and it discusses future perspectives. The findings in larger genomewide association analyses and cDNA expression arrays are described, and the BRCA1/BRCA2 complex is compared in detail between the 2 species.