An integrated, valveless system for microfluidic purification and reverse transcription-PCR amplification of RNA for detection of infectious agents

Lab Chip. 2011 Mar 7;11(5):957-61. doi: 10.1039/c0lc00136h. Epub 2010 Dec 8.

Abstract

We describe the first miniaturized device capable of the front-end sample preparation essential for detecting RNA-based infectious agents. The microfluidic device integrates sample purification and reverse transcription PCR (RT-PCR) amplification for the identification and detection of influenza A. The device incorporates a chitosan-based RNA binding phase for the completely aqueous isolation of nucleic acids, avoiding the PCR inhibitory effects of guanidine and isopropanol used in silica-based extraction methods. The purified nucleic acids and the reagents needed for single-step RT-PCR amplification are fluidically mobilized simultaneously to a PCR chamber. Utilizing infrared (IR)-mediated heating allowed for a > 5-fold decrease in RT-PCR analysis time compared to a standard thermal cycling protocol used in a conventional thermal cycler. Influenza A virus [A/PR/8/34 (H1N1)] was used as a simulant in this study for virus-based infectious and biowarfare agents with RNA genomes, and was successfully detected in a mock nasal swab sample at clinically relevant concentrations. Following on-chip purification, a fragment specific to the influenza A nucleoprotein gene was first amplified via RT-PCR amplification using IR-mediated heating to achieve more rapid heating and cooling rates. This was initially accomplished on a two-chip system to optimize the SPE and RT-PCR, and then translated to an integrated SPE-RT-PCR device.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Influenza A Virus, H1N1 Subtype / genetics
  • Influenza A Virus, H1N1 Subtype / isolation & purification*
  • Microfluidic Analytical Techniques / methods*
  • Nose / virology
  • RNA, Viral / analysis
  • RNA, Viral / genetics*
  • RNA, Viral / isolation & purification*
  • Reverse Transcriptase Polymerase Chain Reaction / instrumentation*
  • Solid Phase Extraction
  • Systems Integration*
  • Time Factors

Substances

  • RNA, Viral