To improve anticancer therapeutic success of photodynamic therapy (PDT), combination treatments represent a viable strategy. Sphingolipid analogs combined with anticancer drugs can enhance tumor response. We have shown that LCL29, a C6-pyridinium ceramide, promotes therapeutic efficacy of Photofrin-PDT in mouse SCCVII squamous cell carcinoma tumors. The long-term effect of the combination PDT + LCL29 is unknown. In this study we used the same model to test the long-term curative potential of Foscan-PDT + LCL29. We show that treatment of SCCVII tumors with the combination led to enhanced long-term tumor cure compared to PDT alone. LCL29 itself did not prevent tumor growth. All treatments triggered early increases in tumor-associated C16-ceramide, C18-ceramide, dihydrosphingosine, and global levels of dihydroceramides. PDT-evoked increases in tumor-associated sphingosine-1-phosphate and dihydrosphingosine-1-phosphate remained elevated or were attenuated after the combination, respectively; in contrast, LCL29 had no effect on these two sphingolipids. Our data demonstrate that adjuvant LCL29 improves PDT long-term therapeutic efficacy, implying translational potential of the combination. Furthermore, our findings indicate that changes in the sphingolipid profile might serve as predictive biomarkers of tumor response to treatments.