Microcontact click printing for templating ultrathin films of metal-organic frameworks

Langmuir. 2011 Feb 15;27(4):1341-5. doi: 10.1021/la103958z. Epub 2010 Dec 16.

Abstract

The controlled growth of metal-organic frameworks (MOFs) over surfaces has been investigated using a variety of surface analytical techniques. The use of microcontact printing to prepare surfaces, patterned with regions capable of nucleating the growth of MOFs, has been explored by employing copper-catalyzed alkyne-azide cycloaddition (CuAAC) to pattern silicon wafers with carboxylic acids, a functional group that has been shown to nucleate the growth of MOFs on surfaces. Upon subjecting the patterned silicon surfaces to solvothermal conditions, MOF thin films were obtained and characterized subsequently by AFM, SEM, and grazing-incidence XRD (GIXRD). Large crystals (∼0.5 mm) have also been nucleated, as indicated by the presence of a bas-relief of the original pattern on one surface of the crystal, suggesting that it is possible to transfer the template surface pattern onto a single crystal of a MOF.