Ionization is the dominant response of atoms and molecules to intense laser fields and is at the basis of several important techniques, such as the generation of attosecond pulses that allow the measurement of electron motion in real time. We present experiments in which metastable xenon atoms were ionized with intense 7-micrometer laser pulses from a free-electron laser. Holographic structures were observed that record underlying electron dynamics on a sublaser-cycle time scale, enabling photoelectron spectroscopy with a time resolution of almost two orders of magnitude higher than the duration of the ionizing pulse.