In this study, the potential of high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) for metabolomic profiling of red wine samples was examined. Fifty one wines representing three varieties (Cabernet Sauvignon, Merlot, and Pinot Noir) of various geographical origins were sourced from the European and US retail market. To find compounds detected in analyzed samples, an automated compound (feature) extraction algorithm was employed for processing background subtracted single MS data. Stepwise reduction of the data dimensionality was followed by principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) which were employed to explore the structure of the data and construct classification models. The validated PLS-DA model based on data recorded in positive ionization mode enabled correct classification of 96% of samples. Determination of molecular formula and tentative identification of marker compound was carried out using accurate mass measurement of full single MS spectra. Additional information was obtained by correlating the fragments obtained by MS/MS accurate mass spectra using the QTOF with collision induced dissociation (CID) of precursor ions.
Copyright © 2010 Elsevier B.V. All rights reserved.