Mapping the sequence of conformational changes underlying selectivity filter gating in the K(v)11.1 potassium channel

Nat Struct Mol Biol. 2011 Jan;18(1):35-41. doi: 10.1038/nsmb.1966. Epub 2010 Dec 19.

Abstract

The potassium channel selectivity filter both discriminates between K(+) and sodium ions and contributes to gating of ion flow. Static structures of conducting (open) and nonconducting (inactivated) conformations of this filter are known; however, the sequence of protein rearrangements that connect these two states is not. We show that closure of the selectivity filter gate in the human K(v)11.1 K(+) channel (also known as hERG, for ether-a-go-go-related gene), a key regulator of the rhythm of the heartbeat, is initiated by K(+) exit, followed in sequence by conformational rearrangements of the pore domain outer helix, extracellular turret region, voltage sensor domain, intracellular domains and pore domain inner helix. In contrast to the simple wave-like sequence of events proposed for opening of ligand-gated ion channels, a complex spatial and temporal sequence of widespread domain motions connect the open and inactivated states of the K(v)11.1 K(+) channel.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ERG1 Potassium Channel
  • Ether-A-Go-Go Potassium Channels / chemistry*
  • Ether-A-Go-Go Potassium Channels / physiology
  • Humans
  • Ion Channel Gating / physiology*
  • Kinetics
  • Potassium / metabolism*
  • Protein Structure, Tertiary

Substances

  • ERG1 Potassium Channel
  • Ether-A-Go-Go Potassium Channels
  • KCNH2 protein, human
  • Potassium