In an attempt to generate a suitable animal model to study the infectivity and possible pathogenicity of human immunodeficiency viruses, we intravenously inoculated juvenile rhesus macaques and African green monkeys with a molecularly cloned virus, human immunodeficiency virus type 2 HIV-2sbl/isy, as well as with the uncloned HIV-2nih-z virus. Infection was monitored by virus recovery from the peripheral blood cells and by seroconversion against HIV-2 antigens measured by Western immunoblot, radioimmunoprecipitation, and enzyme-linked immunosorbent assay. We successfully infected two out of two macaques with the molecularly cloned virus and one macaque out of two with the HIV-2nih-z. No evidence of infection was seen in the African green monkeys with either virus. We followed the infected animals for 2 years. The animals remained healthy, although we observed intermittent lymphadenopathy and a transient decrease in the absolute number of circulating CD4+ T lymphocytes in both animals infected with the molecularly cloned virus. Virus isolation from the peripheral blood cells of the infected animals was successful only within the first few months after inoculation. Evidence of persistent infection was provided by the detection of proviral DNA by polymerase chain reaction analysis of the blood cells of the inoculated animals and by the stability of antiviral antibody titers. To evaluate the genetic drift of the proviral DNA, we molecularly cloned viruses which were reisolated 1 and 5 months postinoculation from one of these animals. Comparison of the DNA sequences of the envelope genes of both these isolates indicated that a low degree of variation (0.2%) in the envelope protein had occurred in vivo during the 5-month period. These data suggest that the use of HIV-2sbl/isy in rhesus macaques may represent a good animal model system to study prevention of viral infection. In particular, molecularly cloned virus can be manipulated for functional studies of viral genes in the pathogenesis of acquired immune deficiency syndrome and provides a reproducible source of virus for vaccine studies.