Homeostatic scaling requires group I mGluR activation mediated by Homer1a

Neuron. 2010 Dec 22;68(6):1128-42. doi: 10.1016/j.neuron.2010.11.008.

Abstract

Homeostatic scaling is a non-Hebbian form of neural plasticity that maintains neuronal excitability and informational content of synaptic arrays in the face of changes of network activity. Here, we demonstrate that homeostatic scaling is dependent on group I metabotropic glutamate receptor activation that is mediated by the immediate early gene Homer1a. Homer1a is transiently upregulated during increases in network activity and evokes agonist-independent signaling of group I mGluRs that scales down the expression of synaptic AMPA receptors. Homer1a effects are dynamic and play a role in the induction of scaling. Similar to mGluR-LTD, Homer1a-dependent scaling involves a reduction of tyrosine phosphorylation of GluA2 (GluR2), but is distinct in that it exploits a unique signaling property of group I mGluR to confer cell-wide, agonist-independent activation of the receptor. These studies reveal an elegant interplay of mechanisms that underlie Hebbian and non-Hebbian plasticity.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carrier Proteins / genetics
  • Carrier Proteins / physiology*
  • Cells, Cultured
  • Cerebral Cortex / metabolism
  • Excitatory Postsynaptic Potentials / genetics
  • Excitatory Postsynaptic Potentials / physiology
  • Homeostasis / genetics
  • Homeostasis / physiology*
  • Homer Scaffolding Proteins
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neuronal Plasticity / genetics
  • Neuronal Plasticity / physiology*
  • Receptors, Metabotropic Glutamate / metabolism*
  • Signal Transduction / genetics
  • Signal Transduction / physiology

Substances

  • Carrier Proteins
  • Homer Scaffolding Proteins
  • Receptors, Metabotropic Glutamate
  • metabotropic glutamate receptor type 1