The prediction and assessment of environmental pollution by arsenic are important preconditions of advocating environmental protection and human health risk assessment. A yellow fluorescent protein-based whole-cell biosensor for the detection of arsenite and arsenate was constructed and tested. An arsenic-resistant promoter and the regulatory gene arsR were obtained by PCR from the genome of Escherichia coli DH5alpha, and phiYFP was introduced into E. coli DH5alpha as a reporter gene to construct an arsenic-resistant whole-cell biosensor (WCB-11) in which phiYFP was expressed well for the first time. Experimental results demonstrated that the biosensor has a good response to arsenic and the expression of phiYFP. When strain WCB-11 was exposed to As3+ and As5+, the expression of yellow fluorescence was time-dependent and dose-dependent. This engineered construct is expected to become established as an inexpensive and convenient method for the detection of arsenic in the field.