Viral Interleukin-6 (vIL-6) is encoded by Human herpes virus 8 (HHV8), also known as Kaposi's sarcoma (KS)-associated herpes virus (KSHV). HHV8 infection is found in patients with KS, primary effusion lymphoma (PEL) and plasma cell-type of multicentric Castleman's disease (MCD), with a high incidence observed in HIV infected individuals. vIL-6 shares about 25% identity with its human counterpart. Human IL-6 (hIL-6) binds to the human IL-6 receptor (hIL-6R) and the hIL-6/hIL-6R complex associates with the signaling receptor subunit gp130. Upon dimerization of gp130 intracellular signaling is initiated. All cells in the body express gp130 but only some cell types express the hIL-6R. Human IL-6 does not stimulate cells, which do not express hIL-6R. However, a naturally occurring soluble form of the hIL-6R (shIL-6R) can bind hIL-6 and the complex of hIL-6/shIL-6R can stimulate cells, which only express gp130 but no hIL-6R. This process, which has been named trans-signaling, leads to a dramatic increase in the spectrum of hIL-6 target cells during inflammation and cancer. vIL-6, in contrast to hIL-6, can directly bind to and activate gp130 without the need of the hIL-6R. Therefore, at least in theory, vIL-6 can stimulate every cell in the human body. This review highlights the properties of vIL-6 regarding structural features, implications for pathophysiology, and strategies of neutralization. Furthermore, mechanisms of activation of gp130 by hIL-6, vIL-6, and by forced dimerization will be discussed.
Copyright © 2010 Elsevier GmbH. All rights reserved.