Reciprocal control of hERG stability by Hsp70 and Hsc70 with implication for restoration of LQT2 mutant stability

Circ Res. 2011 Feb 18;108(4):458-68. doi: 10.1161/CIRCRESAHA.110.227835. Epub 2010 Dec 23.

Abstract

Rationale: The human ether-a-go-go-related gene (hERG) encodes the α subunit of the potassium current I(Kr). It is highly expressed in cardiomyocytes and its mutations cause long QT syndrome type 2. Heat shock protein (Hsp)70 is known to promote maturation of hERG. Hsp70 and heat shock cognate (Hsc70) 70 has been suggested to play a similar function. However, Hsc70 has recently been reported to counteract Hsp70.

Objective: We investigated whether Hsc70 counteracts Hsp70 in the control of wild-type and mutant hERG stability.

Methods and results: Coexpression of Hsp70 with hERG in HEK293 cells suppressed hERG ubiquitination and increased the levels of both immature and mature forms of hERG. Immunocytochemistry revealed increased levels of hERG in the endoplasmic reticulum and on the cell surface. Electrophysiological studies showed increased I(Kr). All these effects of Hsp70 were abolished by Hsc70 coexpression. Heat shock treatment of HL-1 mouse cardiomyocytes induced endogenous Hsp70, switched mouse ERG associated with Hsc70 to Hsp70, increased I(Kr), and shortened action potential duration. Channels with disease-causing missense mutations in intracellular domains had a higher binding capacity to Hsc70 than wild-type channels and channels with mutations in the pore region. Knockdown of Hsc70 by small interfering RNA or heat shock prevented degradation of mutant hERG proteins with mutations in intracellular domains.

Conclusions: These results indicate reciprocal control of hERG stability by Hsp70 and Hsc70. Hsc70 is a potential target in the treatment of LQT2 resulting from missense hERG mutations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Cell Membrane / metabolism
  • Cells, Cultured
  • Disease Models, Animal
  • Electrophysiologic Techniques, Cardiac
  • Endoplasmic Reticulum / metabolism
  • Ether-A-Go-Go Potassium Channels / genetics*
  • Ether-A-Go-Go Potassium Channels / metabolism*
  • Ether-A-Go-Go Potassium Channels / pharmacology
  • HEK293 Cells
  • HSC70 Heat-Shock Proteins / metabolism*
  • HSP70 Heat-Shock Proteins / metabolism*
  • Heat-Shock Response / physiology
  • Humans
  • Long QT Syndrome / genetics*
  • Long QT Syndrome / metabolism*
  • Mice
  • Mutation, Missense / genetics*
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / metabolism
  • RNA, Small Interfering / pharmacology

Substances

  • Ether-A-Go-Go Potassium Channels
  • HSC70 Heat-Shock Proteins
  • HSP70 Heat-Shock Proteins
  • RNA, Small Interfering