Growth differentiation factor 9 (GDF9) which controls the fecundity of Belclare, Cambridge, Santa Ines, Moghani, Ghezel and Thoka ewes was studied as a candidate gene for the prolificacy of Small Tail Han sheep. According to the sequence of ovine GDF9 gene, six pairs of primers were designed to detect single nucleotide polymorphisms of two exons of GDF9 gene in both high fecundity breed (Small Tail Han sheep) and low fecundity breed (Dorset sheep) by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Only the products amplified by primers 2-1 and 2-2 displayed polymorphisms. For primer 2-1, three genotypes (AA, AB and BB) were detected in both sheep breeds. Sequencing revealed one silent mutation (G477A) in exon 2 of GDF9 gene in the BB genotype in comparison with the AA, which was known as G3 mutation of GDF9 gene in Belclare and Cambridge ewes. The relationship of least squares means for litter size was AA > AB > BB in Small Tail Han sheep (P > 0.05). For primer 2-2, two genotypes (CC and CD) were detected in both sheep breeds. Sequencing revealed one novel single nucleotide mutation (G729T) in exon 2 of GDF9 gene in the CD genotype in comparison with the CC, which resulted in an amino acid change (Gln243His). The ewes with mutation heterozygous genotype CD had 0.77 (P < 0.01) lambs more than those with wild type CC in Small Tail Han sheep. These results preliminarily indicated that allele D of GDF9 gene was a potential genetic marker for improving litter size in Small Tail Han sheep.