Standard reduction potentials, SRPs, of the halogen atoms have been calculated in water on the basis of an appropriate thermochemical cycle. Using the best up-to-date thermodynamic data available in the literature, we have calculated E(o)(X•/X-) values of 3.66, 2.59, 2.04, and 1.37 V vs SHE for F•, Cl•, Br•, and I•, respectively. Additionally, we have computed the SRPs of Cl•, Br•, and I• in acetonitrile (CH3CN) and dimethylformamide (DMF) by correcting the values obtained in water for the free energies of transfer of X• and X- from water to the nonaqueous solvent S and the intersolvent potential between water and S. From the values of E(o)(X •/X-) in CH(3)CN and DMF, the SRPs of a series of alkyl halides of relevance to atom transfer radical polymerization and other important processes such as pollution abatement have been calculated in these two solvents. This has been done with the aid of a thermochemical cycle involving the gas-phase homolytic dissociation of the C-X bond, solvation of RX, R•, and X•, and reduction of X• to X- in solution.