Background: Acute rejection is still one of the main complications which enhances the cost and the risk to renal graft failure. Chemokines, interacting with respective receptors, can recruit leukocytes into grafts and mediate allograft rejection. In this study, we aimed to analyze gene expression of chemokines including CCL5/RANTES, CXCL10/IP-10, CXCL13/BCA-1, and receptors of CCR5, CXCR3, CXCR5 in peripheral blood mononuclear cells (PBMCs) during acute renal allograft rejection
Methods: Gene expression of all these chemokines and receptors in PBMCs were analyzed by real-time PCR from 14 stable recipients, 32 biopsy-proven acute rejection (AR), and 5 acute tubular necrosis (ATN).
Results: Gene expression of CCL5, CXCL10, CXCL13, and CCR5 were up-regulated both in AR and ATN group compared to stable recipients (fold change>2, P<0.05). Serum creatinine recovered to baseline level after anti-rejection therapy was defined as AR-sensitive and creatinine maintained above 200 μmol/L as AR-resistant. Expression of CXCL10 and CXCL13 were 5.98-, 2.94-, and 20.5, 10.8-fold change in AR-resistant and AR-sensitive compared to stable recipients, respectively. The expression of CXCL10 and CXCL13 was a twofold change in AR-resistant compared to AR-sensitive recipients (P<0.05). Five out of ten AR-resistant recipients lost graft function in the follow-up.
Conclusion: CXCL10 and CXCL13 expression were highly up-regulated in PBMCs in acute renal allograft rejection, especially in poor response to anti-rejection therapy and detrimental prognosis.