Dendritic trafficking of brain-derived neurotrophic factor mRNA: regulation by translin-dependent and -independent mechanisms

J Neurochem. 2011 Mar;116(6):1112-21. doi: 10.1111/j.1471-4159.2010.07166.x. Epub 2011 Jan 20.

Abstract

Dendritic trafficking and translation of brain-derived neurotrophic factor (BDNF) transcripts play a key role in mediating synaptic plasticity. Recently, we demonstrated that siRNA-mediated knockdown of translin, an RNA-binding protein, impairs KCl-induced dendritic trafficking of BDNF mRNA in cultured hippocampal neurons. We have now assessed whether translin deletion impairs dendritic trafficking of BDNF mRNA in hippocampal neurons in vivo. We have found that translin and its partner protein, trax, undergo dendritic translocation in response to treatment with pilocarpine, a pro-convulsant muscarinic agonist that increases dendritic trafficking of BDNF mRNA in hippocampal neurons. In translin knockout mice, the basal level of dendritic BDNF mRNA is decreased in CA1 pyramidal neurons. However, translin deletion does not block pilocarpine's ability to increase dendritic trafficking of BDNF mRNA indicating that the requirement for translin in this process varies with the stimulus employed to drive it. Consistent with this inference, we found that dendritic trafficking of BDNF mRNA induced by bath application of recombinant BDNF in cultured hippocampal neurons, is not blocked by siRNA-mediated knockdown of translin. Taken together, these in vivo and in vitro findings indicate that dendritic trafficking of BDNF mRNA can be mediated by both translin-dependent and -independent mechanisms.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Brain-Derived Neurotrophic Factor / genetics*
  • DNA-Binding Proteins / metabolism
  • Dendrites / drug effects
  • Dendrites / metabolism*
  • Electrophoretic Mobility Shift Assay / methods
  • Hippocampus / cytology
  • Immunoprecipitation / methods
  • In Vitro Techniques
  • Matrix Metalloproteinase 3 / deficiency
  • Matrix Metalloproteinase 3 / physiology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Muscarinic Agonists / pharmacology
  • Neurons / cytology
  • Pilocarpine / pharmacology
  • RNA, Messenger / metabolism*
  • RNA, Small Interfering / pharmacology

Substances

  • Brain-Derived Neurotrophic Factor
  • DNA-Binding Proteins
  • Muscarinic Agonists
  • RNA, Messenger
  • RNA, Small Interfering
  • Tsnax protein, mouse
  • Pilocarpine
  • Matrix Metalloproteinase 3