Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions

FEBS J. 2011 Feb;278(4):643-53. doi: 10.1111/j.1742-4658.2010.07985.x. Epub 2010 Dec 30.

Abstract

Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Biocatalysis
  • Chickens
  • HEK293 Cells
  • Humans
  • Phosphorylation
  • src Homology Domains*
  • src-Family Kinases / chemistry
  • src-Family Kinases / metabolism*

Substances

  • src-Family Kinases