Transformation of proteins and peptides to fibrillar aggregates rich in β sheets underlies many diseases, but mechanistic details of these structural transitions are poorly understood. To simulate aggregation, four equivalents of a water-soluble, α-helical (65 %) amphipathic peptide (AEQLLQEAEQLLQEL) were assembled in parallel on an oxazole-containing macrocyclic scaffold. The resulting 4α-helix bundle is monomeric and even more α helical (85 %), but it is also unstable at pH 4 and undergoes concentration-dependent conversion to β-sheet aggregates and amyloid fibrils. Fibrils twist and grow with time, remaining flexible like rope (>1 μm long, 5-50 nm wide) with multiple strings (2 nm), before ageing to matted fibers. At pH 7 the fibrils revert back to soluble monomeric 4α-helix bundles. During α→β folding we were able to detect soluble 3(10) helices in solution by using 2D-NMR, CD and FTIR spectroscopy. This intermediate satisfies the need for peptide elongation, from the compressed α helix to the fully extended β strand/sheet, and is driven here by 3(10) -helix aggregation triggered in this case by template-promoted helical bundling and by hydrogen-bonding glutamic acid side chains. A mechanism involving α⇌α(4) ⇌(3(10) )(4) ⇌(3(10) )(n) ⇌(β)(n) ⇋m(β)(n) equilibria is plausible for this peptide and also for peptides lacking hydrogen-bonding side chains, with unfavourable equilibria slowing the α→β conversion.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.