Nutritional value is a priority in new product development. Using vegetable or marine oils, rich in polyunsaturated fatty acids, in dairy beverage formulations is an option to provide the consumers with healthier products. However, these formulations are prone to oxidation, which is responsible for rapid flavour degradation and the development of potentially toxic reaction products during storage. Flaxseed lignans, secoisolariciresinol diglucoside (SDG), and its mammalian metabolites have antioxidant activity and could be used in beverage formulations to prevent oxidation. Commercially available SDG extract was added to the formulation of dairy beverages enriched with flaxseed oil. As an alternative approach, dairy beverages were produced from milk naturally rich in SDG metabolites obtained through the alteration of cow diet. Resistance to oxidation was determined from the kinetics of hexanal and propanal production during heat and light exposure treatments. Increasing SDG concentration in dairy beverage slightly reduced redox potential but had no effect on oxygen consumption during oxidation treatments. The presence of SDG in dairy beverage significantly improved resistance to heat- and light-induced oxidation. However, purified enterolactone, a mammalian metabolite from SDG, prevented oxidation at much lower concentrations. The use of milk from dairy cow fed flaxseed meal did not improve resistance to oxidation in dairy beverage. Enterolactone concentration in milk was increased by the experimental diet but it remained too low to observe any significant effect on dairy beverage oxidation.