Structural variations are widespread in the human genome and can serve as genetic markers in clinical and evolutionary studies. With the advances in the next-generation sequencing technology, recent methods allow for identification of structural variations with unprecedented resolution and accuracy. They also provide opportunities to discover variants that could not be detected on conventional microarray-based platforms, such as dosage-invariant chromosomal translocations and inversions. In this review, we will describe some of the sequencing-based algorithms for detection of structural variations and discuss the key issues in future development.