Alternative community compositional and dynamical states: the dual consequences of assembly history

J Anim Ecol. 2011 May;80(3):577-85. doi: 10.1111/j.1365-2656.2010.01799.x. Epub 2011 Jan 12.

Abstract

1. Much work on ecological consequences of community assembly history has focused on the formation of history-induced alternative stable equilibria. We hypothesize that assembly history may affect not only community composition but also population dynamics, with assembled communities differing in species composition potentially residing in different dynamical states. 2. We provided an empirical test of the aforementioned hypothesis using a laboratory microcosm experiment that manipulated both the colonization order of three bacterivorous protist species in the presence of a protist predator and environmental productivity. 3. Both priority effects and random divergence emerged, resulting in two different community compositional states: one characterized by the dominance of one prey species and the other by the extinction of the same prey. While communities in the former state exhibited noncyclic dynamics, the majority of communities in the latter state exhibited cyclic dynamics driven by the interaction between another prey and the predator. 4. Temporal variability of total prey community biovolume consequently differed among communities with different histories. 5. Changing productivity altered priority effects on the structure and dynamics of communities experiencing only certain histories. 6. Our results support the dual (compositional and dynamical) consequences of assembly history and emphasize the importance of incorporating the dynamical view into the field of community assembly.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biota*
  • Ciliophora
  • Food Chain
  • Population Density
  • Population Dynamics
  • Tetrahymena pyriformis
  • Tetrahymenina