A platform for rapid detection of multiple oncogenic mutations with relevance to targeted therapy in non-small-cell lung cancer

J Mol Diagn. 2011 Jan;13(1):74-84. doi: 10.1016/j.jmoldx.2010.11.010. Epub 2010 Dec 23.

Abstract

The identification of somatically acquired tumor mutations is increasingly important in the clinical management of cancer because the sensitivity of targeted drugs is related to the genetic makeup of individual tumors. Thus, mutational profiles of tumors can help prioritize anticancer therapy. We report herein the development and validation of two multiplexed assays designed to detect in DNA from FFPE tissue more than 40 recurrent mutations in nine genes relevant to existing and emerging targeted therapies in lung cancer. The platform involves two methods: a screen (SNaPshot) based on multiplex PCR, primer extension, and capillary electrophoresis that was designed to assess for 38 somatic mutations in eight genes (AKT1, BRAF, EGFR, KRAS, MEK1, NRAS, PIK3CA, and PTEN) and a PCR-based sizing assay that assesses for EGFR exon 19 deletions, EGFR exon 20 insertions, and HER2 exon 20 insertions. Both the SNaPshot and sizing assays can be performed rapidly, with minimal amounts of genetic material. Compared with direct sequencing, in which mutant DNA needs to compose 25% or more of the total DNA to easily detect a mutation, the SNaPshot and sizing assays can detect mutations in samples in which mutant DNA composes 1.56% to 12.5% and 1.56% to 6.25% of the total DNA, respectively. These robust, reliable, and relatively inexpensive assays should help accelerate adoption of a genotype-driven approach in the treatment of lung cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Non-Small-Cell Lung / diagnosis*
  • Carcinoma, Non-Small-Cell Lung / genetics*
  • Cell Line, Tumor
  • DNA, Neoplasm / genetics
  • Genetic Testing / methods*
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Lung Neoplasms / diagnosis*
  • Lung Neoplasms / genetics*
  • Mutation*
  • Reproducibility of Results

Substances

  • DNA, Neoplasm