We study optically driven Rabi rotations of a quantum dot exciton transition between 5 and 50 K, and for pulse areas of up to 14π. In a high driving field regime, the decay of the Rabi rotations is nonmonotonic, and the period decreases with pulse area and increases with temperature. By comparing the experiments to a weak-coupling model of the exciton-phonon interaction, we demonstrate that the observed renormalization of the Rabi frequency is induced by fluctuations in the bath of longitudinal acoustic phonons, an effect that is a phonon analogy of the Lamb shift.