Ultrastrong light-matter coupling regime with polariton dots

Phys Rev Lett. 2010 Nov 5;105(19):196402. doi: 10.1103/PhysRevLett.105.196402. Epub 2010 Nov 2.

Abstract

The regime of ultrastrong light-matter interaction has been investigated theoretically and experimentally, using zero-dimensional electromagnetic resonators coupled with an electronic transition between two confined states of a semiconductor quantum well. We have measured a splitting between the coupled modes that amounts to 48% of the energy transition, the highest ratio ever observed in a light-matter coupled system. Our analysis, based on a microscopic quantum theory, shows that the nonlinear polariton splitting, a signature of this regime, is a dynamical effect arising from the self-interaction of the collective electronic polarization with its own emitted field.