In the present study, we investigated the effects of camostat mesilate (CM), a synthetic protease inhibitor, on visceral sensitivity and paracellular permeability induced by the acute restraint stress. We also explored the possible mechanisms underlying these effects. The acute restraint stress was induced by wrapping the fore shoulders, upper forelimbs and thoracic trunk of Sprague-Dawley rats for 2h. Either CM (30, 100 and 300mg/kg) or saline was intragastrically administrated to the rats 30min before the acute restraint stress. Visceral perception was quantified as visceral motor response with an electromyography in a subset of rats. Paracellular permeability was determined in another subset of rats. We found that the visceral sensitivity and paracellular permeability were significantly reduced in the CM-treated rats. Moreover, the fecal protease activity was decreased in the CM-treated rats. The ZO-1 protein expression was markedly reduced by the stress treatment, but this decrease was suppressed by CM administration. Our data indicated that CM could efficiently inhibit visceral sensitivity and paracellular permeability induced by the acute restraint stress in rats. Therefore, CM might be an effective drug for the treatment of irritable bowel syndrome.
Copyright © 2011 Elsevier B.V. All rights reserved.