Ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases have overlapping activities during chromosomal signal joint formation

Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2022-7. doi: 10.1073/pnas.1013295108. Epub 2011 Jan 18.

Abstract

Lymphocyte antigen receptor gene assembly occurs through the process of V(D)J recombination, which is initiated when the RAG endonuclease introduces DNA DSBs at two recombining gene segments to form broken DNA coding end pairs and signal end pairs. These paired DNA ends are joined by proteins of the nonhomologous end-joining (NHEJ) pathway of DSB repair to form a coding joint and signal joint, respectively. RAG DSBs are generated in G1-phase developing lymphocytes, where they activate the ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases to orchestrate diverse cellular DNA damage responses including DSB repair. Paradoxically, although Atm and DNA-PKcs both function during coding joint formation, Atm appears to be dispensible for signal joint formation; and although some studies have revealed an activity for DNA-PKcs during signal joint formation, others have not. Here we show that Atm and DNA-PKcs have overlapping catalytic activities that are required for chromosomal signal joint formation and for preventing the aberrant resolution of signal ends as potentially oncogenic chromosomal translocations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ataxia Telangiectasia Mutated Proteins
  • Cell Cycle Proteins / metabolism*
  • Chromosomes*
  • DNA-Activated Protein Kinase / metabolism*
  • DNA-Binding Proteins / metabolism*
  • Mice
  • Mice, SCID
  • Nuclear Proteins / metabolism*
  • Protein Serine-Threonine Kinases / metabolism*
  • Tumor Suppressor Proteins / metabolism*

Substances

  • Cell Cycle Proteins
  • DNA-Binding Proteins
  • Nuclear Proteins
  • Tumor Suppressor Proteins
  • Ataxia Telangiectasia Mutated Proteins
  • Atm protein, mouse
  • DNA-Activated Protein Kinase
  • Prkdc protein, mouse
  • Protein Serine-Threonine Kinases