Although mechanical stress is known to profoundly influence the composition and structure of the extracellular matrix (ECM), the mechanisms by which this regulation occurs remain poorly understood. We used a single-molecule magnetic tweezers assay to study the effect of force on collagen proteolysis by matrix metalloproteinase-1 (MMP-1). Here we show that the application of ∼10 pN in extensional force causes an ∼100-fold increase in proteolysis rates. Our results support a mechanistic model in which the collagen triple helix unwinds prior to proteolysis. The data and resulting model predict that biologically relevant forces may increase localized ECM proteolysis, suggesting a possible role for mechanical force in the regulation of ECM remodeling.