Introduction: Triage protocols are only initiated when it is apparent that resource deficits will occur across a broad geographical area despite efforts to expand or acquire additional capacity. Prior to the pandemic the UK Department of Health (DOH) recommended the use of a staged triage plan incorporating Sepsis-related Organ Failure Assessment (SOFA) developed by the Ontario Ministry of Health to assist in the triage of critical care admissions and discharges during an influenza outbreak in the UK. There are data to suggest that had it been used in the recent H1N1 pandemic it may have led to inappropriate limitation of therapy if surge capacity had been overwhelmed.
Methods: We retrospectively reviewed the performance of the Simple Triage Scoring System (STSS) as an indicator of the utilization of hospital resources in adult patients with confirmed H1N1 admitted to a university teaching hospital. Our aim was to compare it against the staged initial SOFA score process with regards to mortality, need for intensive care admission and requirement for mechanical ventilation and assess its validity.
Results: Over an 8 month period, 62 patients with confirmed H1N1 were admitted. Forty (65%) had documented comorbidities and 27 (44%) had pneumonic changes on their admission CXR. Nineteen (31%) were admitted to the intensive care unit where 5 (26%) required mechanical ventilation (MV). There were 3 deaths. The STSS group categorization demonstrated a better discriminating accuracy in predicting critical care resource usage with a receiver operating characteristic area under the curve (95% confidence interval) for ICU admission of 0.88 (0.78-0.98) and need for MV of 0.91 (0.83-0.99). This compared to the staged SOFA score of 0.77 (0.65-0.89) and 0.87 (0.72-1.00) respectively. Low mortality rates limited analysis on survival predictions.
Conclusions: The STSS accurately risk stratified patients in this cohort according to their risk of death and predicted the likelihood of admission to critical care and the requirement for MV. Its single point in time, accuracy and easily collected component variables commend it as an alternative reproducible system to facilitate the triage and treatment of patients in any future influenza pandemic.