We describe the use of dynamic combinatorial chemistry (DCC) to identify ligands for the stem-loop structure located at the exon 10-5'-intron junction of Tau pre-mRNA, which is involved in the onset of several tauopathies including frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). A series of ligands that combine the small aminoglycoside neamine and heteroaromatic moieties (azaquinolone and two acridines) have been identified by using DCC. These compounds effectively bind the stem-loop RNA target (the concentration required for 50% RNA response (EC(50)): 2-58 μM), as determined by fluorescence titration experiments. Importantly, most of them are able to stabilize both the wild-type and the +3 and +14 mutated sequences associated with the development of FTDP-17 without producing a significant change in the overall structure of the RNA (as analyzed by circular dichroism (CD) spectroscopy), which is a key factor for recognition by the splicing regulatory machinery. A good correlation has been found between the affinity of the ligands for the target and their ability to stabilize the RNA secondary structure.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.