Rationale: CpG-oligodeoxynucleotide (CpG-ODN; CpG), a Toll-like receptor-9 ligand, has been widely studied as a potential antitumor adjuvant. Toll-like receptor-9 is highly expressed on lung carcinoma tissues and some immune cells, such as plasmacytoid dendritic cells and B cells.
Objectives: The aim of our study was to elucidate the effect of CpG on B cells in a mouse model of lung carcinoma.
Methods: C57Bl/6j, B cell-deficient, and Nude mice were intravenously implanted with the lung metastatic B16-F10 melanoma cells and killed 3 and 7 days after CpG administration.
Measurements and main results: Administration of CpG increased lung tumor growth in B16-F10-implanted C57BL/6J mice. The genetic absence of B cells strongly facilitated CpG-induced tumor progression. In contrast, the adoptive transfer of CpG-activated B cells induced tumor arrest, associated with a reduced suppressive immune environment due to the lower recruitment of regulatory T cells, myeloid-derived suppressor cells, and CD8(+) regulatory T cells along with the reduced expression of suppressive cytokines such as IL-10 and transforming growth factor-β. Furthermore, concomitant with higher production of IFN-γ, the apoptosis rate in the lungs of mice adoptively transferred with CpG-activated B cells was increased. Depletion of mature CD20(+) B cells increased the lung tumor burden in CpG-treated C57BL/6J mice and nude mice. Moreover, nude mice had the same lung tumor burden as B cell-deficient mice when mature CD20(+) B cells were depleted.
Conclusions: Our data demonstrate the protective antitumor activity of CpG-activated B cells and shed light on CpG as an antitumor adjuvant for lung cancer therapy.