A rigidity-enhanced antimicrobial activity: a case for linear cationic α-helical peptide HP(2-20) and its four analogues

PLoS One. 2011 Jan 24;6(1):e16441. doi: 10.1371/journal.pone.0016441.

Abstract

Linear cationic α-helical antimicrobial peptides are referred to as one of the most likely substitutes for common antibiotics, due to their relatively simple structures (≤ 40 residues) and various antimicrobial activities against a wide range of pathogens. Of those, HP(2-20) was isolated from Helicobacter pylori ribosomal protein. To reveal a mechanical determinant that may mediate the antimicrobial activities, we examined the mechanical properties and structural stabilities of HP(2-20) and its four analogues of same chain length by steered molecular dynamics simulation. The results indicated the following: the resistance of H-bonds to the tensile extension mediated the early extensive stage; with the loss of H-bonds, the tensile force was dispensed to prompt the conformational phase transition; and Young's moduli (N/m(2)) of the peptides were about 4 ∼ 8 × 10(9). These mechanical features were sensitive to the variation of the residue compositions. Furthermore, we found that the antimicrobial activity is rigidity-enhanced, that is, a harder peptide has stronger antimicrobial activity. It suggests that the molecular spring constant may be used to seek a new structure-activity relationship for different α-helical peptide groups. This exciting result was reasonably explained by a possible mechanical mechanism that regulates both the membrane pore formation and the peptide insertion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents
  • Antimicrobial Cationic Peptides / chemistry*
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / isolation & purification
  • Biomechanical Phenomena
  • Cell Membrane Permeability
  • Hydrogen Bonding
  • Peptide Fragments / chemistry*
  • Peptide Fragments / isolation & purification
  • Structure-Activity Relationship
  • Tensile Strength

Substances

  • Anti-Bacterial Agents
  • Antimicrobial Cationic Peptides
  • Bacterial Proteins
  • Hp (2-20) protein, Helicobacter pylori
  • Peptide Fragments