Metabolic adaptations in a H2 producing heterocyst-forming cyanobacterium: potentials and implications for biological engineering

J Proteome Res. 2011 Apr 1;10(4):1772-84. doi: 10.1021/pr101055v. Epub 2011 Mar 1.

Abstract

Nostoc punctiforme ATCC 29133 is a photoautotrophic cyanobacterium with the ability to fix atmospheric nitrogen and photoproduce hydrogen through the enzyme nitrogenase. The H(2) produced is reoxidized by an uptake hydrogenase. Inactivation of the uptake hydrogenase in N. punctiforme leads to increased H(2) release but unchanged rates of N(2) fixation, indicating redirected metabolism. System-wide understanding of the mechanisms of this metabolic redirection was obtained using complementary quantitative proteomic approaches, at both the filament and the heterocyst level. Of the total 1070 identified and quantified proteins, 239 were differentially expressed in the uptake hydrogenase mutant (NHM5) as compared to wild type. Our results indicate that the inactivation of uptake hydrogenase in N. punctiforme changes the overall metabolic equilibrium, affecting both oxygen reduction mechanisms in heterocysts as well as processes providing reducing equivalents for metabolic functions such as N(2) fixation. We identify specific metabolic processes used by NHM5 to maintain a high rate of N(2) fixation, and thereby potential targets for further improvement of nitrogenase based H(2) photogeneration. These targets include, but are not limited to, components of the oxygen scavenging capacity and cell envelope of heterocysts and proteins directly or indirectly involved in reduced carbon transport from vegetative cells to heterocysts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Bioengineering / methods*
  • Carbohydrate Metabolism
  • Carbon / metabolism
  • Chromatography, Liquid / methods
  • Cyanobacteria / cytology
  • Cyanobacteria / genetics
  • Cyanobacteria / metabolism*
  • Energy Metabolism
  • Hydrogen / metabolism*
  • Mass Spectrometry / methods
  • Nitrogen / metabolism
  • Nitrogen Fixation / physiology
  • Nitrogenase / genetics
  • Nitrogenase / metabolism
  • Nostoc / cytology
  • Nostoc / genetics
  • Nostoc / metabolism*
  • Proteomics / methods

Substances

  • Bacterial Proteins
  • Carbon
  • Hydrogen
  • Nitrogenase
  • Nitrogen