Rationale: There is strong evidence that oxidative modification of low-density lipoprotein (oxLDL) plays a critical role in atherogenesis and that oxLDL may profoundly influence the mechanical stability of atherosclerotic plaques.
Objective: To block oxLDL, we designed, expressed, and tested Fc-CD68, a soluble oxLDL binding protein consisting of human Fc and the extracellular domain of the human oxLDL-binding receptor CD68.
Methods and results: Fc-CD68 bound with high specific affinity to oxLDL and strongly bound and colocalized with oxLDL in plaques. To study the effects of repeated administrations of Fc-CD68 on the progression of atherosclerosis and plaque vulnerability, 12- and 16-week old cholesterol-fed ApoE(-/-) mice received either Fc-CD68 (n = 6) or Fc control protein (n = 6 to 8) thrice weekly for 4 weeks. Macroscopic and histological analysis of Sudan red lipid staining showed strong and significant reduction of plaque extension in the aorta and in the aortic root, respectively. Histological analysis of pentachrome- and Sirius-stained sections of the brachiocephalic arteries of 20 week-old ApoE(-/-) mice revealed that Fc-CD68 significantly reduced the occurrence of spontaneous ruptures of established plaques by ≈20%, compared with Fc and drastically increased the collagen content of plaques. Furthermore, in immunostained sections of the brachiocephalic artery and the aortic root, Fc-CD68 reduced the infiltration of plaques with T lymphocytes, and macrophages by ≈50% and 30%, respectively.
Conclusions: The oxLDL binding protein Fc-CD68 attenuates atherosclerosis and strengthens the stability of atherosclerotic plaques.