Sepsis is a serious medical condition characterized by dysregulated systemic inflammatory responses followed by immunosuppression. To study the pathophysiology of sepsis, diverse animal models have been developed. Polymicrobial sepsis induced by cecal ligation and puncture (CLP) is the most frequently used model because it closely resembles the progression and characteristics of human sepsis. Here we summarize the role of several immune components in the pathogenesis of sepsis induced by CLP. However, several therapies proposed on the basis of promising results obtained by CLP could not be translated to the clinic. This demonstrates that experimental sepsis models do not completely mimic human sepsis. We propose several strategies to narrow the gap between experimental sepsis models and clinical sepsis, including targeting factors that contribute to the immunosuppressive phase of sepsis, and reproducing the heterogeneity of human patients.
Copyright © 2011 Elsevier Ltd. All rights reserved.