A major challenge in nanotechnology and nanomedicine is to integrate tumor targeting, imaging, and selective therapy functions into a small single nanoparticle (<50 nm). Herein, photosensitizer-conjugated magnetic nanoparticles with ∼20 nm in diameter were strategically designed and prepared for gastric cancer imaging and therapy. The second generation photosensitizer chlorin e6 (Ce6) was covalently anchored on the surface of magnetic nanoparticles with silane coupling agent. We found that the covalently incorporated Ce6 molecules retained their spectroscopic and functional properties for near-infrared (NIR) fluorescence imaging and photodynamic therapy (PDT), and the core magnetic nanoparticles offered the functions of magnetically guided drug delivery and magnetic resonance imaging (MRI). The as-prepared single particle platform is suitable for simultaneous targeting PDT and in vivo dual-mode NIR fluorescence imaging and MRI of nude mice loaded with gastric cancer or other tumors.
Copyright © 2011 Elsevier Ltd. All rights reserved.