At present, thiol ligands are generally used whenever the classical Brust-Schiffrin two-phase method is employed to prepare metal nanoparticles. In general, the previous research was mainly focused on utilizing small molecular thiol compounds or thiol polymers as the stabilizers in organic phase to obtain small sized and uniform gold nanoparticles (Au NPs). Such preparations are usually associated with the problems of ligand exchange on the nanoparticle's surface due to strong Au-thiol interaction. Herein, we report an approach to produce fairly uniform Au NPs with diameters about 2-6 nm using thioether end-functional polymer ligands (DDT-PVAc and PTMP-PVAc) as the capping agents. These nanoparticles are thoroughly characterized using DLS, TEM, UV-Vis spectroscopy and other complementary techniques. The results indicate that multidentate thioether polymeric ligands (PTMP-PVAc) lead to formation of smaller but special 'multimer' morphology in organic phase; whereas fairly uniform nanoparticles are produced using monodentate thioether functionalized ligands (DDT-PVAc). Further modification of such polymer ligands to introduce the hydrophilic functionalities realizes the phase transfer of Au NPs from organic to aqueous media.