The brain shows a high degree of activity at rest. The significance of this activity has come increasingly into focus. At present, however, the interaction between this activity and stimulus-induced activity is not well defined. The interaction between a task-negative (perigenual anterior cingulate cortex, pgACC) and task-positive (supragenual anterior cingulate cortex, sgACC) region during a simple task was thus investigated using a combination of fMRI and MRS. Negative BOLD responses in the pgACC were found to show a unidirectional effective connectivity with task-induced positive BOLD responses in the sgACC. This connectivity was shown to be related specifically with glutamate levels in the pgACC. These results demonstrate an interaction between deactivation from resting-state and resting-state glutamate levels in a task-negative region (pgACC), and task-induced activity in a task-positive region (sgACC). This provides insight into the neuronal and biochemical mechanisms by means of which the resting state activity of the brain potentially impacts upon subsequent stimulus-induced activity.
Copyright © 2011 Wiley Periodicals, Inc.