End-tidal carbon dioxide tension reflects arterial carbon dioxide tension in the heat-stressed human with and without simulated hemorrhage

Am J Physiol Regul Integr Comp Physiol. 2011 Apr;300(4):R978-83. doi: 10.1152/ajpregu.00784.2010. Epub 2011 Feb 9.

Abstract

End-tidal carbon dioxide tension (Pet(CO(2))) is reduced during an orthostatic challenge, during heat stress, and during a combination of these two conditions. The importance of these changes is dependent on Pet(CO(2)) being an accurate surrogate for arterial carbon dioxide tension (Pa(CO(2))), the latter being the physiologically relevant variable. This study tested the hypothesis that Pet(CO(2)) provides an accurate assessment of Pa(CO(2)) during the aforementioned conditions. Comparisons between these measures were made: 1) after two levels of heat stress (N = 11); 2) during combined heat stress and simulated hemorrhage [via lower-body negative pressure (LBNP), N = 8]; and 3) during an end-tidal clamping protocol to attenuate heat stress-induced reductions in Pet(CO(2)) (N = 7). Pet(CO(2)) and Pa(CO(2)) decreased during heat stress (P < 0.001); however, there was no group difference between Pa(CO(2)) and Pet(CO(2)) (P = 0.36) nor was there a significant interaction between thermal condition and measurement technique (P = 0.06). To verify that this nonsignificant trend for the interaction was not due to a type II error, Pet(CO(2)) and Pa(CO(2)) at three distinct thermal conditions were also compared using paired t-tests, revealing no difference between Pa(CO(2)) and Pet(CO(2)) while normothermic (P = 0.14) and following a 1.0 ± 0.2°C (P = 0.21) and 1.4 ± 0.2°C (P = 0.28) increase in internal temperature. During LBNP while heat stressed, measures of Pet(CO(2)) and Pa(CO(2)) were similar (P = 0.61). Likewise, during the end-tidal carbon dioxide clamping protocol, the increases in Pet(CO(2)) (7.5 ± 2.8 mmHg) and Pa(CO(2)) (6.6 ± 3.4 mmHg) were similar (P = 0.31). These data indicate that mean Pet(CO(2)) reflects mean Pa(CO(2)) during the evaluated conditions.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Body Temperature / physiology
  • Brain / blood supply
  • Carbon Dioxide / metabolism*
  • Heat-Shock Response / physiology*
  • Hemorrhage / blood
  • Hemorrhage / etiology
  • Hemorrhage / physiopathology*
  • Humans
  • Hypotension, Orthostatic / blood
  • Hypotension, Orthostatic / physiopathology*
  • Lower Body Negative Pressure / adverse effects
  • Middle Aged
  • Regional Blood Flow / physiology
  • Tidal Volume / physiology

Substances

  • Carbon Dioxide