Background: Our previous studies demonstrated that simvastatin reduced neuronal death, increased neurogenesis, and promoted functional recovery after traumatic brain injury (TBI).
Objective: To investigate the effect of simvastatin on angiogenesis after TBI and the related signaling pathways.
Methods: Saline or simvastatin (1 mg/kg) was administered orally to rats starting at day 1 after TBI or sham surgery and then daily for 14 days. Rats were sacrificed at 3 and 14 days after treatment. Brain sections and tissues were prepared for immunohistochemical staining, enzyme-linked immunosorbent assay, and Western blot analysis. Cultured rat brain microvascular endothelial cells were subjected to oxygen-glucose deprivation followed by immunocytochemical staining with phallotoxins and vascular endothelial growth factor receptor-2 (VEGFR-2). Western blot analysis was carried out to examine the simvastatin-induced activation of the v-akt murine thymoma viral oncogene homolog (Akt) signaling pathway. The expression of VEGFR-2 was detected by enzyme-linked immunosorbent assay.
Results: Simvastatin significantly increased the length of vascular perimeter, promoted the proliferation of endothelial cells, and improved the sensorimotor function after TBI. Simvastatin stimulated endothelial cell tube formation after oxygen-glucose deprivation in vitro. VEGFR-2 expression in both brain tissues and cultured rat brain microvascular endothelial cells was enhanced after simvastatin treatment, which may be modulated by activation of Akt. Akt-dependent endothelial nitric oxide synthase phosphorylation was also induced by simvastatin in vivo and in vitro.
Conclusion: Simvastatin augments TBI-induced angiogenesis in the lesion boundary zone and hippocampus and improves functional recovery. Simvastatin also promotes angiogenesis in vitro. These beneficial effects on angiogenesis may be related to simvastatin-induced activation of the VEGFR-2/Akt/endothelial nitric oxide synthase signaling pathway.