Magnetic resonance molecular imaging has emerged as a potential approach for tumor diagnosis in the last few decades. This approach consists of the delivery of MR contrast agents to the tumor by specific targeted carriers. For this purpose, a lipopeptide was constructed by using a cyclic RGD peptide headgroup coupled to palmitic acid anchors via a KGG tripeptide spacer. Targeted paramagnetic liposomes were then prepared by the incorporation of RGD-coupled-lipopeptides into lipid bilayers for specific bounding to tumor. In vitro, study demonstrated that RGD-targeted liposomes exhibited a better binding affinity to targeted cells than non-targeted liposomes. MR imaging of mice bearing A549 tumors with the RGD-targeted paramagnetic liposomes also resulted in a greater signal enhancement of tumor compared to non-targeted liposomes and pure contrast agents groups. In addition, biodistribution study also showed specific tumor targeting of RGD-targeted paramagnetic liposomes in vivo. Therefore, RGD-targeted paramagnetic liposomes prepared in the present study may be a more promising method for early tumor diagnosis.
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.