TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation

Mol Cell. 2011 Feb 18;41(4):458-70. doi: 10.1016/j.molcel.2011.01.019.

Abstract

The innate immune-signaling kinase, TBK1, couples pathogen surveillance to induction of host defense mechanisms. Pathological activation of TBK1 in cancer can overcome programmed cell death cues, enabling cells to survive oncogenic stress. The mechanistic basis of TBK1 prosurvival signaling, however, has been enigmatic. Here, we show that TBK1 directly activates AKT by phosphorylation of the canonical activation loop and hydrophobic motif sites independently of PDK1 and mTORC2. Upon mitogen stimulation, triggering of the innate immune response, re-exposure to glucose, or oncogene activation, TBK1 is recruited to the exocyst, where it activates AKT. In cells lacking TBK1, insulin activates AKT normally, but AKT activation by exocyst-dependent mechanisms is impaired. Discovery and characterization of a 6-aminopyrazolopyrimidine derivative, as a selective low-nanomolar TBK1 inhibitor, indicates that this regulatory arm can be pharmacologically perturbed independently of canonical PI3K/PDK1 signaling. Thus, AKT is a direct TBK1 substrate that connects TBK1 to prosurvival signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Survival
  • Cell Transformation, Neoplastic
  • Cells, Cultured
  • HCT116 Cells
  • Humans
  • Immunity, Innate
  • Mice
  • Neoplasms / enzymology*
  • Phosphorylation
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Signal Transduction*
  • Transfection

Substances

  • Tbk1 protein, mouse
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt