There is growing clinical and neuropathologic evidence suggesting that cognitive decline in early Alzheimer's disease (AD) is aggravated by a synergistic relationship between AD and cerebrovascular disease associated with cardiovascular risk factors such as diabetes and hypertension. Here we used the stereologic "Space Balls" method to investigate the relationships between AD pathology and cardiovascular risk factors in postmortem human brains of patients with hypertension and diabetes in two groups - one consisting of cases with AD diagnosis and one of cases without. Hippocampal CA1 and CA3 microvasculature length density estimates were generated to characterize quantitatively the contribution of cardiovascular risk factors to the severity of neuropathologic changes. Our main finding is that the mean and variance of length density values in the AD group were significantly increased from the non-AD group, regardless of the absence or presence of a cardiovascular risk factor. An additional finding is that in the AD group without a risk factor, dementia severity correlated with amount of length density change in the CA1 field-this correlation did not exist in the AD groups with risk factors. Our findings suggest a role for cardiovascular risk factors in quantifiable change of hippocampal CA1 field microvasculature, as well as suggest a possible role of cardiovascular risk factors in altering microvasculature pathology in the presence of AD.