Low circulating insulin-like growth factor I increases atherosclerosis in ApoE-deficient mice

Am J Physiol Heart Circ Physiol. 2011 May;300(5):H1898-906. doi: 10.1152/ajpheart.01081.2010. Epub 2011 Feb 18.

Abstract

Some clinical studies have suggested that lower IGF-I levels may be associated with an increased risk of ischemic heart disease. We generated atherosclerosis-prone apolipoprotein E-deficient (ApoE(-/-)) mice with 6T alleles (6T/ApoE(-/-) mice) with a 20% decline in circulating IGF-I and fed these mice and control ApoE(-/-) mice with normal chow or a Western diet for 12 wk to evaluate the effect of low serum IGF-I on atherosclerosis progression. We found that the 6T/ApoE(-/-) phenotype was characterized by an increased atherosclerotic burden, elevated plaque macrophages, and increased proinflammatory cytokine TNF-α levels compared with ApoE(-/-) controls. 6T/ApoE(-/-) mice had similar body weight, blood pressure, serum total cholesterol levels, total plaque and smooth muscle cell apoptosis rates, and circulating levels of endothelial progenitor cells as ApoE(-/-) mice. 6T/ApoE(-/-) mice fed with normal chow had reduced vascular endothelial nitric oxide synthase mRNA levels and a trend to increased aortic expression of chemokine (C-C motif) receptor (CCR)1, CCR2, and monocyte chemoattractant protein-1/chemokine (C-C motif) ligand 2. Western diet-fed 6T/ApoE(-/-) mice had a trend to increased expression of macrophage scavenger receptor-1/scavenger receptor-A, osteopontin, ATP-binding cassette (subfamily A, member 1), and angiotensin-converting enzyme and elevated circulating levels of the neutrophil chemoattractant chemokine (C-X-C motif) ligand 1 (KC). Our data establish a link between lower circulating IGF-I and increased atherosclerosis that has important clinical implications.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Apolipoproteins E / deficiency*
  • Apolipoproteins E / genetics
  • Apolipoproteins E / physiology
  • Atherosclerosis / epidemiology*
  • Atherosclerosis / physiopathology*
  • Blood Pressure / physiology
  • Body Weight / physiology
  • Cholesterol / blood
  • Disease Models, Animal
  • Insulin-Like Growth Factor I / metabolism*
  • Mice
  • Mice, Inbred C3H
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Rats
  • Risk Factors
  • Tumor Necrosis Factor-alpha / blood

Substances

  • Apolipoproteins E
  • Tumor Necrosis Factor-alpha
  • Insulin-Like Growth Factor I
  • Cholesterol