Measurement of 13C-1H dipolar couplings in solids by using ultra-fast magic-angle spinning NMR spectroscopy with symmetry-based sequences

Phys Chem Chem Phys. 2011 Apr 7;13(13):5967-73. doi: 10.1039/c0cp01907k. Epub 2011 Feb 21.

Abstract

We show that (13)C-(1)H dipolar couplings in fully protonated organic solids can be measured by applying a Symmetry-based Resonance-Echo DOuble-Resonance (S-REDOR) experiment at ultra-fast Magic-Angle Spinning (MAS). The (13)C-(1)H dipolar couplings are recovered by using the R12 recoupling scheme, while the interference of (1)H-(1)H dipolar couplings are suppressed by the symmetry properties of this sequence and the use of high MAS frequency (65 kHz). The R12 method is especially advantageous for large (13)C-(1)H dipolar interactions, since the dipolar recoupling time can be incremented by steps as short as one rotor period. This allows a fine sampling for the rising part of the dipolar dephasing curve. We demonstrate experimentally that one-bond (13)C-(1)H dipolar coupling in the order of 22 kHz can be accurately determined. Furthermore, the proposed method allows a rapid evaluation of the dipolar coupling by fitting the S-REDOR dipolar dephasing curve with an analytical expression.