Antibody and cell-mediated immune responses and survival between Holstein and Norwegian Red × Holstein Canadian calves

J Dairy Sci. 2011 Mar;94(3):1576-85. doi: 10.3168/jds.2010-3502.

Abstract

As an extension of a former study, the objectives of this study were to evaluate purebred Holstein (HO; n=140) and crossbred Norwegian Red × Holstein (NRFX; n=142) calves for antibody (AMIR) and cell-mediated immune responses (CMIR) as well as survival. Blood was collected on d 0, 14, and 21, and calves were immunized on d 0 and 14 with type 1 (Candida albicans) and type 2 (hen egg white lysozyme) antigens, which have been shown to induce CMIR and AMIR, respectively. Day 21 background skin-fold measurements of either side of the tail-fold were taken and intradermal injections of test (type 1 antigen) and control (phosphate saline buffer) were administered. Day 23 final skin-fold measurements were taken to assess delayed type hypersensitivity as an indicator of CMIR. Survival data were obtained from CanWest Dairy Herd Improvement. Statistical Analysis System general linear models were used to analyze all immune response and survival data and to determine statistical significance between breeds. Results showed that NRFX had greater primary IgM, IgG, IgG1, and secondary IgG1 antibody response, as well as greater primary IgG1:IgG2 ratio to the type 2 antigen compared with HO. The NRFX also had greater primary IgG1 and IgG2, and secondary IgG2 antibody response as well as greater primary IgG1:IgG2 ratio to the type 1 antigen. The NRFX calves had a tendency toward greater survival from age at immune response testing to calving. No difference was observed between breeds for other secondary antibody response traits or delayed type hypersensitivity. Results indicate NRFX have greater AMIR and therefore may have enhanced defense against extracellular pathogens. This may contribute to increased survival compared with HO. Both breeds, however, likely have similar defense against intracellular pathogens, because no differences in CMIR were observed. In general, these results may suggest that crossbreeding could improve resistance to certain diseases in dairy calves, resulting in decreased input costs to producers for crossbred calves compared with purebred calves. However, more research with larger sample sizes and different breeds should be conducted to confirm these results and obtain a complete picture of the benefits of crossbreeding on immune response traits in calves.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies / immunology*
  • Antibody Formation / genetics
  • Canada
  • Cattle / immunology*
  • Female
  • Hybridization, Genetic / immunology*
  • Immunity, Cellular / genetics*
  • Male
  • Species Specificity
  • Survival Analysis

Substances

  • Antibodies